AP Worksheet #6 (Due: February 21st) – Reworked End of Chapter 4

Note: This grade will go on t	he Second Semester.			
Score:		Name:		
Section I – No calculators (P	lease show all work)	<u>Gradi</u> (60 Poin	<u>Grading Scale</u> (60 Points Possible)	
1. If $f(x) = 2x^{1/4}$, then $f^{-1}(x) = 2x^{1/4}$	(8) =	A = 52 correct A = 50 correct	C + = 44 correct C = 40 correct	
2. $\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{2x^3 + 2x + 5} =$		$B_{+} = 49$ correct $B_{-} = 47$ correct	$C_{-} = 37$ correct	
3. If $f(x) = \frac{2x+1}{x+3}$ then $f'(x) = \frac{2x+1}{x+3}$	x) is	B = 47 correct B- = 45 correct	D = 30 correct D = 30 correct	
x-1 (write as a single fraction)	F = 29 or less correc	$D^2 = 50$ context	
4. If the function f is continuous for all real numbers and if $f(x) = \frac{x^2 + x - 12}{x + 4}$ when $x \neq -4$, then				
f(-4) =				
5. If $x^3 + 4x^2y - 3y^2 = 8$, then $\frac{dy}{dx} =$ (write as a single fraction)				
6. If $f(x) = \tan x + \sec^2 x$, the	hen $f'(x) =$			
7. An equation of a line normal to the graph of $y = 3x^2 + 2x - 1$ at (2,15) is				
8. $\int_{-1}^{1} \frac{4x}{(1+x^2)^2} dx = $				
9. If $f(x) = \tan^2 x$, then $f''(\pi) =$				
10. If $f(x) = \frac{5}{x^2 + 1}$ and $g(x) = 3x$, then $f(g(2)) = $				
11. $\int x\sqrt{5x^2-4} dx =$ (write using rational exponents)				
12. The slope of the line tangent to the graph $3x^2 + 5y^2 = 17$ at (2,1) is				
13. The equation $y = 1 + 5 \sin \theta$	$\frac{\pi}{6}(x+5)$ has a fundation	mental period of		
14. For what value of x does	the function $f(x) = 2$.	$x^{3} - 18x^{2} - 240x$ have a local i	minimum?	
15. If $f(x) = \begin{cases} x^2 + 5 \text{ if } x < 2\\ 4x - 5 \text{ if } x \ge 2 \end{cases}$, for all real numbers .	x, which of the following must	t be true? Justify.	
I. $f(x)$ is co	ontinuous everywhere.			
II. $f(x)$ is differentiable everywhere.				
III. $f(x)$ has a local minimum at $x = 2$.				
(A) I only(D) III only	(B) II only(E) I, II, and III	(C) II and III only		

- 16. The acceleration of a particle moving along the y-axis at time t is given by a(t) = 4t 12. If the velocity is 10 when t = 0 and the position is 4 when t = 0, then the particle is changing direction at t =______
- 17. The average value of a function $f(x) = (x-1)^2$ on the interval from x = 1 to x = 5 is ______

18. If
$$F(x) = \int \sqrt{(x^3 + 3x + 121)(x^2 + 1)dx}$$
 then $F(x) =$ _____

- 19. $\lim_{x \to 0} \frac{\sin 2x \cos x \sin 2x}{x^2} = \underline{\qquad}$
- 20. If $f(x) = \tan^3(x+\pi)$, then $f'(\pi) =$ _____
- $21. \int x\sqrt{x+3} \, dx = \underline{\qquad}$
- 22. $\frac{d}{dx} \left[\int_{2}^{x^2} \ln(3t-5) dt \right] =$ _____
- 23. If a particle moves on a line according to the law $s = t^5 + 2t^3$, then how many times does it reverse directions?
- 24. A rectangular pigpen is to be built against a wall so that only three sides will require fencing. If *p* feet of fencing are to be used, the area of the largest possible pen is _____.
- 25. A smooth curve with equation y = f(x) is such that its slope at each x equals x^2 . If the curve goes through the point (-1,2), then its equation is ______.

26. If G(2) = 5 and $G'(x) = \frac{10x}{9-x^2}$, then an estimate of G(2.2) using local linearization is approximately

27. The average value of f(x) = 3 + |x| on the interval [-2,4] is _____.

28. Suppose
$$f(x) = \frac{x^2 + x}{x}$$
, if $x \neq 0$ and $f(0) = 1$. Prove below that f is continuous at $x = 0$.

The graph shown is for questions 29 and 30. It shows the velocity of an object during the interval $0 \le t \le 9$.

29. The object obtains the greatest speed at t =_____.

30. The object was at the origin at t = 3. It returned to the origin at _____.

31.
$$\int_{0}^{\pi/4} \sin x \, dx + \int_{-\pi/4}^{0} \cos x \, dx = \underline{\qquad}$$

32.
$$\lim_{h \to 0} \frac{\sec\left(\frac{\pi}{6} + h\right) - \sec\left(\frac{\pi}{6}\right)}{h} = \underline{\qquad}$$

33. If
$$\int_{30}^{100} f(x) dx = A \text{ and } \int_{50}^{100} f(x) dx = B, \text{ then } \int_{30}^{50} f(x) dx = \underline{\qquad}$$

34. If $f(x) = 3x^{2} - x$, and $g(x) = x^{2}$, then $\int g(f(x)) dx = \underline{\qquad}$
35. The graph of $y = 2x^{3} - 5x^{2} + x + 2$ has a local minimum at $\underline{\qquad}$
36. The average value of the function $f(x) = \frac{2x^{2} - 3x + 1}{x - 1}$ on the interval [2,4] is $\underline{\qquad}$
37.
$$\frac{d}{dx} \left(\int_{0}^{3x} \cos(t) dt \right) = \underline{\qquad}$$

38. If the definite integral $\int_{1}^{3} (x^2 + 1)dx$ is approximated by using the Trapezoid Rule when n = 4, the error from the actual is _____.

- $39. \int (\cot^2 x) dx = \underline{\qquad}$
- 40. Find the distance traveled (to three decimal places) in the first 4 seconds, for a particle whose velocity is given by $v(t) = 7 \sin^2 t$; where t stands for time.
- 41. $\int \tan^6 x \sec^2 x \, dx = \underline{\qquad}$
- 42. The intervals on which the function $f(x) = x^4 4x^3 + 4x^2 + 6$ increases are (is) _____.
- 43. If we replace $\sqrt{x-2}$ by *u*, then $\int_{3}^{6} \frac{\sqrt{x-2}}{x} dx$ is equivalent to the integral ______ (make sure the integral is in terms of *u*)
- 44. How many point of inflection does the function *f* have on the interval $0 \le x \le 6$ if $f''(x) = 2 3\sqrt{x} (\cos^3 x)$?

45. The graph shows the rate at which tickets were sold at a movie theater during the last hour before show time. Using right-rectangle method, an estimate of the size of the audience is ______

Section III Free Response Questions (No calculator) – Work is to be shown on this page. Note: On the free response sections I will be grading your written reasons as well as organization and neatness.

1) Let f be the function given by $f(x) = 1 + \frac{2}{x} + \frac{1}{x^2}$.

- a) Find the *x* and *y* intercepts. Justify.
- b) Write an equation for each vertical and horizontal asymptote for the graph of f. Justify.
- c) Find the intervals on which f is increasing and decreasing. Justify.
- d) Find the maximum and minimum values of *f*. Justify.

No Calculator – Work is to be shown on this page.

2) Let the graph of s(t), the position function (in feet) of a moving particle, be given below. Let *t* be measured in seconds. The concavity changes at t = 2 and t = 4

- a) Find the values of *t* for which the particle is moving to the right and when it is moving to left (i.e., when velocity is positive or negative, respectively). Justify.
- b) Find the values of *t* for which the acceleration is positive and for which it is negative. Justify.
- c) Find the values of t for which the particle is speeding up (i.e., when |v| is increasing). Justify.

Section IV Free Response (calculator may be used) – Work is to be shown on this page. Note: On the free response sections I will be grading your written reasons as well as organization and neatness.

- 3) A particle moves along the *x*-axis so that its acceleration at any time t > 0 is given by a(t) = 12t 18. At time t = 1, the velocity of the particle is v(1) = 0 and the position x(1) = 9.
 - a) Write an expression for the velocity of the particle v(t).
 - b) At what values of *t* does the particle change direction? Justify.
 - c) Write an expression for the position function, x(t), of the particle.
 - d) Find the total distance traveled by the particle from $t = \frac{3}{2}$ to t = 4.

Calculator Allowed – Work is to be shown on this page.

- 4) A floodlight is on the ground 45 meters from a building. A thief 2 meters tall runs from the floodlight towards the building at 6 meters/second.
 - a) Using a triangle(s) draw a picture of the situation.
 - b) What is the relationship (equation) between the shadow on the building and the distance the thief is from the floodlight?
 - c) How rapidly is the length of the shadow on the building changing when he is 15 meters from the building?