AP Worksheet \#6 (Due: February $21^{\text {st }}$) - Reworked
End of Chapter 4
Note: This grade will go on the Second Semester.
Score:
Section I - No calculators (Please show all work)

1. If $f(x)=2 x^{1 / 4}$, then $f^{-1}(8)=$ \qquad
2. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+1}{3 x^{3}+2 x+5}=$ \qquad
3. If $f(x)=\frac{2 x+1}{x-1}$ then $f^{\prime}(x)$ is \qquad (write as a single fraction)
4. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}+x-12}{x+4}$ when $x \neq-4$, then $f(-4)=$ \qquad
5. If $x^{3}+4 x^{2} y-3 y^{2}=8$, then $\frac{d y}{d x}=$ \qquad (write as a single fraction)
6. If $f(x)=\tan x+\sec ^{2} x$, then $f^{\prime}(x)=$ \qquad
7. An equation of a line normal to the graph of $y=3 x^{2}+2 x-1$ at $(2,15)$ is \qquad
8. $\int_{-1}^{1} \frac{4 x}{\left(1+x^{2}\right)^{2}} d x=$ \qquad
9. If $f(x)=\tan ^{2} x$, then $f^{\prime \prime}(\pi)=$ \qquad
10. If $f(x)=\frac{5}{x^{2}+1}$ and $g(x)=3 x$, then $f(g(2))=$ \qquad
11. $\int x \sqrt{5 x^{2}-4} d x=$ \qquad (write using rational exponents)
12. The slope of the line tangent to the graph $3 x^{2}+5 y^{2}=17$ at $(2,1)$ is \qquad
13. The equation $y=1+5 \sin \frac{\pi}{6}(x+5)$ has a fundamental period of \qquad
14. For what value of x does the function $f(x)=2 x^{3}-18 x^{2}-240 x$ have a local minimum? \qquad
15. If $f(x)=\left\{\begin{array}{l}x^{2}+5 \text { if } x<2 \\ 4 x-5 \text { if } x \geq 2\end{array}\right.$, for all real numbers x, which of the following must be true? Justify.
I. $f(x)$ is continuous everywhere.
II. $f(x)$ is differentiable everywhere.
III. $f(x)$ has a local minimum at $x=2$.
(A) I only
(B) II only
(C) II and III only
(D) III only
(E) I, II, and III
16. The acceleration of a particle moving along the y-axis at time t is given by $a(t)=4 t-12$. If the velocity is 10 when $t=0$ and the position is 4 when $t=0$, then the particle is changing direction at $t=$ \qquad
17. The average value of a function $f(x)=(x-1)^{2}$ on the interval from $x=1$ to $x=5$ is \qquad
18. If $F(x)=\int \sqrt{\left(x^{3}+3 x+121\right)}\left(x^{2}+1\right) d x$ then $F(x)=$ \qquad
19. $\lim _{x \rightarrow 0} \frac{\sin 2 x \cos x-\sin 2 x}{x^{2}}=$ \qquad
20. If $f(x)=\tan ^{3}(x+\pi)$, then $f^{\prime}(\pi)=$ \qquad
21. $\int x \sqrt{x+3} d x=$ \qquad
22. $\frac{d}{d x}\left[\int_{2}^{x^{2}} \ln (3 t-5) d t\right]=$ \qquad
23. If a particle moves on a line according to the law $s=t^{5}+2 t^{3}$, then how many times does it reverse directions? \qquad
24. A rectangular pigpen is to be built against a wall so that only three sides will require fencing. If p feet of fencing are to be used, the area of the largest possible pen is \qquad .
25. A smooth curve with equation $y=f(x)$ is such that its slope at each x equals x^{2}. If the curve goes through the point $(-1,2)$, then its equation is \qquad .
26. If $G(2)=5$ and $G^{\prime}(x)=\frac{10 x}{9-x^{2}}$, then an estimate of $G(2.2)$ using local linearization is approximately
\qquad .
27. The average value of $f(x)=3+|x|$ on the interval $[-2,4]$ is \qquad .
28. Suppose $f(x)=\frac{x^{2}+x}{x}$, if $x \neq 0$ and $f(0)=1$. Prove below that f is continuous at $x=0$.

Section II (calculators may be used)

The graph shown is for questions 29 and 30. It shows the velocity of an object during the interval $0 \leq t \leq 9$.
29. The object obtains the greatest speed at $t=$ \qquad .
30. The object was at the origin at $t=3$. It returned to the origin at \qquad .
31. $\int_{0}^{\pi / 4} \sin x d x+\int_{-\pi / 4}^{0} \cos x d x=$ \qquad
32. $\lim _{h \rightarrow 0} \frac{\sec \left(\frac{\pi}{6}+h\right)-\sec \left(\frac{\pi}{6}\right)}{h}=$ \qquad
33. If $\int_{30}^{100} f(x) d x=A$ and $\int_{50}^{100} f(x) d x=B$, then $\int_{30}^{50} f(x) d x=$ \qquad
34. If $f(x)=3 x^{2}-x$, and $g(x)=x^{2}$, then $\int g(f(x)) d x=$ \qquad
35. The graph of $y=2 x^{3}-5 x^{2}+x+2$ has a local minimum at \qquad
36. The average value of the function $f(x)=\frac{2 x^{2}-3 x+1}{x-1}$ on the interval [2,4] is \qquad
37. $\frac{d}{d x}\left(\int_{0}^{3 x} \cos (t) d t\right)=$ \qquad
38. If the definite integral $\int_{1}^{3}\left(x^{2}+1\right) d x$ is approximated by using the Trapezoid Rule when $n=4$, the error from the actual is \qquad _.
39. $\int\left(\cot ^{2} x\right) d x=$ \qquad
40. Find the distance traveled (to three decimal places) in the first 4 seconds, for a particle whose velocity is given by $v(t)=7 \sin ^{2} t$; where t stands for time. \qquad
41. $\int \tan ^{6} x \sec ^{2} x d x=$ \qquad
42. The intervals on which the function $f(x)=x^{4}-4 x^{3}+4 x^{2}+6$ increases are (is) \qquad .
43. If we replace $\sqrt{x-2}$ by u, then $\int_{3}^{6} \frac{\sqrt{x-2}}{x} d x$ is equivalent to the integral (make sure the integral is in terms of u)
44. How many point of inflection does the function f have on the interval $0 \leq x \leq 6$ if $f^{\prime \prime}(x)=2-3 \sqrt{x}\left(\cos ^{3} x\right) ?$ \qquad

45. The graph shows the rate at which tickets were sold at a movie theater during the last hour before show time. Using right-rectangle method, an estimate of the size of the audience is \qquad .

Section III Free Response Questions (No calculator) - Work is to be shown on this page.
Note: On the free response sections I will be grading your written reasons as well as organization and neatness.

1) Let f be the function given by $f(x)=1+\frac{2}{x}+\frac{1}{x^{2}}$.
a) Find the x and y intercepts. Justify.
b) Write an equation for each vertical and horizontal asymptote for the graph of f. Justify.
c) Find the intervals on which f is increasing and decreasing. Justify.
d) Find the maximum and minimum values of f. Justify.

No Calculator - Work is to be shown on this page.
2) Let the graph of $s(t)$, the position function (in feet) of a moving particle, be given below. Let t be measured in seconds. The concavity changes at $t=2$ and $t=4$

a) Find the values of t for which the particle is moving to the right and when it is moving to left (i.e., when velocity is positive or negative, respectively). Justify.
b) Find the values of t for which the acceleration is positive and for which it is negative. Justify.
c) Find the values of t for which the particle is speeding up (i.e., when $|v|$ is increasing). Justify.

Section IV Free Response (calculator may be used) - Work is to be shown on this page.
Note: On the free response sections I will be grading your written reasons as well as organization and neatness.
3) A particle moves along the x-axis so that its acceleration at any time $t>0$ is given by $a(t)=12 t-18$. At time $t=1$, the velocity of the particle is $v(1)=0$ and the position $x(1)=9$.
a) Write an expression for the velocity of the particle $v(t)$.
b) At what values of t does the particle change direction? Justify.
c) Write an expression for the position function, $x(t)$, of the particle.
d) Find the total distance traveled by the particle from $t=\frac{3}{2}$ to $t=4$.

Calculator Allowed - Work is to be shown on this page.
4) A floodlight is on the ground 45 meters from a building. A thief 2 meters tall runs from the floodlight towards the building at 6 meters/second.
a) Using a triangle(s) draw a picture of the situation.
b) What is the relationship (equation) between the shadow on the building and the distance the thief is from the floodlight?
c) How rapidly is the length of the shadow on the building changing when he is 15 meters from the building?

